Added 30/06/2025
Machine Learning / regression

svr_bennett2006

Datasets

regression_auto_mpg.csv

Description

Predict car fuel consumption in miles per gallon.

Dimension

{ "x": 19, "y": 804, "F": 1, "G": 11, "H": 0, "f": 1, "g": 2388, "h": 0 }

Solution

{ "optimality": "best_known", "F": 2.542799337786741, "f": 560.6818881929104, "training_r2": 0.8156, "training_rmse": 3.3469, "validation_r2": 0.8063, "validation_rmse": 3.4233 }
regression_avocado_price.csv

Dimension

{ "x": 23, "y": 36528, "F": 1, "G": 13, "H": 0, "f": 1, "g": 109554, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_boston_house_price.csv

Description

Predict the median value homes across 507 Boston suburbs and towns.

Dimension

{ "x": 29, "y": 1047, "F": 1, "G": 16, "H": 0, "f": 1, "g": 3102, "h": 0 }

Solution

{ "optimality": "best_known", "F": 3.3326596397696857, "f": 7476.917189914676, "training_r2": 0.7059, "training_rmse": 4.9679, "validation_r2": 0.6882, "validation_rmse": 5.0904 }
regression_combined_cycle_power_plant.csv

Description

Predict power plant energy output in MW.

Dimension

{ "x": 13, "y": 19149, "F": 1, "G": 8, "H": 0, "f": 1, "g": 57432, "h": 0 }

Solution

{ "optimality": "best_known", "F": 3.6181565191001983, "f": 352755.1777047886, "training_r2": 0.9282, "training_rmse": 4.5724, "validation_r2": 0.9281, "validation_rmse": 4.5769 }
regression_concrete_compressive_strength.csv

Dimension

{ "x": 21, "y": 2085, "F": 1, "G": 12, "H": 0, "f": 1, "g": 6228, "h": 0 }

Solution

{ "optimality": "best_known", "F": 8.410920349854226, "f": 40961.88732629, "training_r2": 0.5868, "training_rmse": 10.6989, "validation_r2": 0.5338, "validation_rmse": 11.3674 }
regression_energy_efficiency.csv

Description

Angeliki Xifara, Athanasios Tsanas

Dimension

{ "x": 21, "y": 1563, "F": 1, "G": 12, "H": 0, "f": 1, "g": 4662, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_insurance.csv

Dimension

{ "x": 21, "y": 2703, "F": 1, "G": 12, "H": 0, "f": 1, "g": 8082, "h": 0 }

Solution

{ "optimality": "best_known", "F": 4235.435897403506, "f": 654856406585.5027, "training_r2": 0.7521, "training_rmse": 6025.446, "validation_r2": 0.7442, "validation_rmse": 6117.632 }
regression_real_estate_valuation.csv

Dimension

{ "x": 17, "y": 849, "F": 1, "G": 10, "H": 0, "f": 1, "g": 2526, "h": 0 }

Solution

{ "optimality": "best_known", "F": 6.249691447590366, "f": 332723134.5306423, "training_r2": 0.5849, "training_rmse": 8.7481, "validation_r2": 0.5737, "validation_rmse": 8.8433 }
regression_toy_2_features.csv

Description

label = 3.0 * feature_1 - 5.0 * feature_2 + 7.0

Dimension

{ "x": 9, "y": 189, "F": 1, "G": 6, "H": 0, "f": 1, "g": 558, "h": 0 }

Solution

{ "optimality": "global", "x": [2.342384984711291,0.00015339162591163628,0,3,-5,7,3,-5,7], "F": 0, "G": [2.342384984711291,0.00015339162591163628,0,0,0,0], "f": 124.5, "training_r2": 1, "training_rmse": 0, "validation_r2": 1, "validation_rmse": 0 }
regression_toy_5_features.csv

Description

label = 1.0 * feature_1 + 2.0 * feature_2 + 3.0 * feature_3 + 4.0 * feature_4 + 6.0 * feature_5 + noise

Dimension

{ "x": 15, "y": 1014, "F": 1, "G": 9, "H": 0, "f": 1, "g": 3024, "h": 0 }

Solution

{ "optimality": "best_known", "F": 0.00263100032236596, "G": [5.456725485601478,0.005762487216478602,0,0.00008218272962301487,0.000060373800451429815,0.000025519346953828403,0.0005300154736520568,0.000017213393981307945,0.00033956244660801745], "f": 82.529647524697, "training_r2": 1, "training_rmse": 0.0031, "validation_r2": 1, "validation_rmse": 0.0031 }
regression_toy_10_features.csv

Dimension

{ "x": 25, "y": 2031, "F": 1, "G": 14, "H": 0, "f": 1, "g": 6060, "h": 0 }

Solution

{ "optimality": "best_known", "F": 0.0025794120164338926, "f": 7.109020086333578, "training_r2": 1, "training_rmse": 0.0029, "validation_r2": 1, "validation_rmse": 0.003 }
regression_toy_20_features.csv

Dimension

{ "x": 45, "y": 40059, "F": 1, "G": 24, "H": 0, "f": 1, "g": 120114, "h": 0 }

Solution

{ "optimality": "global", "F": 0, "f": 799.59078138015, "training_r2": 1, "training_rmse": 0, "validation_r2": 1, "validation_rmse": 0 }