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This bilevel program was first introduced by Bennett et. al. in 2006 [1, Sec-
tion IV, Equation 1] though it has been presented in many forms since then.

The classic Support Vector Regression (SVR) approach has two hyperpa-
rameters, the regularisation constant C' and the tube width e. A third hyper-
parameter A controls the multitask learning learning [2]. Then W and w are
lower and upper bounds, respectively, on the model weights providing feature
selection.

The data consists of feature vectors z; € R? and labels y; € R for i € Q. The
data indices are split into T distinct partitions ; for t = 1,...,T. T-fold cross-
validation methodology is used such that €2; is used to evaluate the validation
loss in the upper-level, while its complement Q; = Q \ € is used to evaluate
training loss in the lower-level.

The upper-level program seeks to choose optimal hyperparameters C, e, \, w, w
such that the optimal regression weights w! chosen by the lower-level (SVR)
program result in the minimum average validation loss.
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The lower-level program seeks to minimise the sum of e-insensitive resid-
uals over training data max{||z]w — y; —¢,0}. The slack variable {e;};cq,
are introduced to remove the max operator. Two extra terms are added for
regularisation.
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Since the lower-level program is convex and has a Slater’s point, Bennett et.
al. suggest solving this with a KKT reformulation.
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