Added 22/07/2025
Machine Learning / regression

adversarial_regression

Datasets

regression_insurance.csv

Dimension

{ "x": 9, "y": 16, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "infeasible", "x": [0,0,0,0,0,0,0,0,0], "F": 100.2705328714835, "G": [], "H": [], "f": 0.23912969134058668, "g": [-0.01173253,-0.00550049], "h": [] }
regression_real_estate_valuation.csv

Dimension

{ "x": 7, "y": 12, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_wine_quality.csv

Dimension

{ "x": 12, "y": 22, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_auto_mpg.csv

Dimension

{ "x": 8, "y": 14, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_avocado_price.csv

Dimension

{ "x": 10, "y": 18, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_combined_cycle_power_plant.csv

Dimension

{ "x": 5, "y": 8, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_concrete_compressive_strength.csv

Dimension

{ "x": 9, "y": 16, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_energy_efficiency.csv

Dimension

{ "x": 9, "y": 16, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_forest_fires.csv

Dimension

{ "x": 13, "y": 24, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_liver_disorders.csv

Dimension

{ "x": 6, "y": 10, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_toy_2_features.csv

Dimension

{ "x": 3, "y": 4, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_toy_5_features.csv

Dimension

{ "x": 6, "y": 10, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_toy_10_features.csv

Dimension

{ "x": 11, "y": 20, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_toy_20_features.csv

Dimension

{ "x": 21, "y": 40, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_wine_quality.csv

Dimension

{ "x": 12, "y": 22, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }
regression_boston_house_price.csv

Dimension

{ "x": 13, "y": 24, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown" }