adversarial_regression

We consider a similar scenario to the above adversarial problem. Let $D \in \mathbb{R}^{n \times p}$ be a static set of n samples of p features with corresponding labels $\gamma \in \mathbb{R}^n$. The learner, in the upper-level, seeks to construct a prediction model with weights $w \in \mathbb{R}^p$ on this data. Meanwhile, suppose there's any adversary who creates dataset $X \in \mathbb{R}^{m \times p}$ containing m samples of the same features with corresponding labels $Y \in \mathbb{R}^m$. The adversary seeks to have their data mislabelled as some target labels $Z = Y + \mu$ for some $\mu \in \mathbb{R}^m$. For example, suppose the learner is training a model to predict the expected insurance payouts for new customers. An adversary might lie on their application form to achieve lower insurance premiums.

Where $\rho \in \mathbb{R}$ is a regularisation parameter and $\delta \in \mathbb{R}$ is the similarity threshold.