Added 18/06/2025
Archetype

quadratic_bilevel

Datasets

aiyoshi_shimizu_1984_ex2.json

Description

Aiyoshi, E. and Shimizu, K. (1984) (see page 1114). A solution method for the static constrained Stackelberg problem via penalty method. https://doi.org/10.1109/TAC.1984.1103455

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 5, "H": 0, "f": 1, "g": 6, "h": 0 }

Solution

{ "optimality": "global", "x": [25,30], "y": [5,10], "F": 5, "G": [0,25,30,25,20], "H": [], "f": 0, "g": [5,0,15,20,15,10], "h": [] }
an_et_al_2009.json

Description

Hoai An, Le Thi and Tao, Pham Dinh and Nguyen Canh, Nam and Thoai, Nguyen (2009) (see page 332). DC programming techniques for solving a class of nonlinear bilevel programs. https://doi.org/10.1007/s10898-008-9325-7

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 4, "H": 0, "f": 1, "g": 6, "h": 0 }

Solution

{ "optimality": "global", "x": [0.2,2], "y": [4,4.6], "F": 2231.727818, "G": [1.6000711866581696e-10,-1.4000245407430612e-10,0.2,2], "H": [], "f": 565.774477, "g": [2.000177801164682e-11,7.105427357601002e-15,3.998934516857844e-11,3.800018077981804e-10,4,4.6], "h": [] }
bard_1988_ex1.json

Description

Bard, Jonathan F. (1988) (see page 18). Convex two-level optimization. https://doi.org/10.1007/BF01580720

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 1, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "global", "x": [1], "y": [0], "F": 17, "G": [1], "H": [], "f": 1, "g": [0,3,6,0], "h": [] }
bard_1988_ex2.json

Description

Bard, Jonathan F. (1988) (see page 23). Convex two-level optimization. https://doi.org/10.1007/BF01580720

Dimension

{ "x": 4, "y": 4, "F": 1, "G": 9, "H": 0, "f": 1, "g": 12, "h": 0 }

Solution

{ "optimality": "unknown", "F": -6600, "f": 54 }
bard_1991_ex1.json

Description

Bard, Jonathan F. (1991) (see page 373). Some properties of the bilevel programming problem. https://doi.org/10.1007/BF00941574

Dimension

{ "x": 1, "y": 2, "F": 1, "G": 2, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "global", "x": [2], "y": [6,0], "F": 2, "G": [0,2], "H": [], "f": 12, "g": [0,6,0], "h": [] }
bard_book_1998.json

Description

Bard, Jonathan F. (1998) (see page 326, example 8.3.2). Practical Bilevel Optimization: Algorithms And Applications. https://doi.org/10.1007/978-1-4757-2836-1

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 4, "H": 0, "f": 1, "g": 7, "h": 0 }

Solution

{ "optimality": "global", "x": [25,30], "y": [5,10], "F": 0, "G": [25,30,25,20], "H": [], "f": 5, "g": [0,5,0,15,20,15,10], "h": [] }
calamai_vicente_1994a.json

Description

Calamai, Paul H. and Vicente, Luis N. (1994). Generating quadratic bilevel programming test problems. https://doi.org/10.1145/174603.174411

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 0, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "global", "x": [1.25], "y": [0.25], "F": 0.0625, "G": [], "H": [], "f": -0.1875, "g": [0,0.5,0], "h": [] }
calamai_vicente_1994b.json

Description

Calamai, Paul H. and Vicente, Luis N. (1994) (see page 115). Generating quadratic bilevel programming test problems. https://doi.org/10.1145/174603.174411

Dimension

{ "x": 4, "y": 2, "F": 1, "G": 0, "H": 0, "f": 1, "g": 6, "h": 0 }

Solution

{ "optimality": "global", "x": [1.25,0.5,1,1], "y": [0.25,0.5], "F": 0.3125, "G": [], "H": [], "f": -0.40625, "g": [0,1,0,2,0.5,0], "h": [] }
calamai_vicente_1994c.json

Description

Calamai, Paul H. and Vicente, Luis N. (1994) (see page 116). Generating quadratic bilevel programming test problems. https://doi.org/10.1145/174603.174411

Dimension

{ "x": 4, "y": 2, "F": 1, "G": 0, "H": 0, "f": 1, "g": 6, "h": 0 }

Solution

{ "optimality": "global", "x": [0.13085,0.05195,0.1022,0.0674], "y": [0.025,0.05], "F": 0.3125, "G": [], "H": [], "f": -0.40625, "g": [0,1,0,2,0.5,-1.1102230246251565e-16], "h": [] }
clark_westerberg_1990a.json

Description

Paulavicius, Remigijus and Adjiman, Claire S. (2017). BASBLib - a library of bilevel test problems. https://doi.org/10.5281/zenodo.897966

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 2, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "global", "x": [1], "y": [3], "F": 5, "G": [7,1], "H": [], "f": 4, "g": [0,3,7], "h": [] }
dempe_etal_2012.json

Description

Dempe, S. and Mordukhovich, B. S. and Zemkoho, A. B. (2012). Sensitivity Analysis for Two-Level Value Functions with Applications to Bilevel Programming. https://doi.org/10.1137/110845197

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 2, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "global", "x": [-1], "y": [1], "F": -1, "G": [0,2], "H": [], "f": -1, "g": [1,0], "h": [] }
dempe_franke_2011_ex41.json

Description

Dempe, Stephan and Franke, Susanne (2011). An algorithm for solving a class of bilevel programming problems. https://tu-freiberg.de/fakult1/forschung/preprints

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 4, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "global", "x": [0,-1], "y": [1,2], "F": 5, "G": [1,0,1,0], "H": [], "f": -2, "g": [0,1,0,2], "h": [] }
dempe_franke_2011_ex42.json

Description

Dempe, Stephan and Franke, Susanne (2011). An algorithm for solving a class of bilevel programming problems. https://tu-freiberg.de/fakult1/forschung/preprints

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 4, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "global", "x": [1,-1], "y": [0,1], "F": 3, "G": [2,0,0,0], "H": [], "f": -1, "g": [0,2.5,1], "h": [] }
dempe_franke_2014_ex38.json

Description

Dempe, Stephan and Franke, Susanne (2014) (see page 279). Solution algorithm for an optimistic linear Stackelberg problem. https://doi.org/10.1016/j.cor.2012.09.002

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 4, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "global", "x": [-1,-1], "y": [2,2], "F": -1, "G": [0,0,2,0.25], "H": [], "f": -4, "g": [2,2,0,0], "h": [] }
dempe_lohse_2011_ex31a.json

Description

Dempe, Stephan and Lohse, Sebastian (2011). Dependence of bilevel programming on irrelevant data. https://optimization-online.org/2011/05/3038/

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 0, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "global", "x": [0,0], "y": [1,1], "F": -5.5, "G": [], "H": [], "f": 0, "g": [0,0,1,1], "h": [] }
dempe_lohse_2011_ex31b.json

Description

Dempe, Stephan and Lohse, Sebastian (2011). Dependence of bilevel programming on irrelevant data. https://optimization-online.org/2011/05/3038/

Dimension

{ "x": 3, "y": 3, "F": 1, "G": 0, "H": 0, "f": 1, "g": 5, "h": 0 }

Solution

{ "optimality": "unknown", "x": [0.5,0.5,0], "y": [0,0,2], "F": -12, "G": [], "H": [], "f": 0, "g": [0,0,0,0,2], "h": [] }
desilva_1978.json

Description

De Silva, A. H. (1978). Sensitivity formulas for nonlinear factorable programming and their application to the solution of an implicitly defined optimization model of US crude oil production. https://wrlc-gwu.primo.exlibrisgroup.com/permalink/01WRLC_GWA/1j51gk4/alma9925067753604107

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 0, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "global", "x": [0.5,0.5], "y": [0.5,0.5], "F": -1, "G": [], "H": [], "f": 0, "g": [0,0,1,1], "h": [] }
falk_liu_1995.json

Description

Falk, James E and Liu, Jiming (1995). On bilevel programming, Part {I}: general nonlinear cases. https://doi.org/10.1007/BF01585928

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 0, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "global", "x": [0.8660254037844386,0.8660254037844386], "y": [0.8660254037844386,0.8660254037844386], "F": -2.1961524227066325, "G": [], "H": [], "f": 0, "g": [0.3660254037844386,0.3660254037844386,0.6339745962155614,0.6339745962155614], "h": [] }
floudas_etal_2013.json

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 4, "H": 0, "f": 1, "g": 7, "h": 0 }

Solution

{ "optimality": "global", "x": [0,0], "y": [-10,-10], "F": 0, "G": [0,0,50,50], "H": [], "f": 200, "g": [10,10,30,0,0,30,30], "h": [] }
gumus_floudas_2001_ex4.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 5, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "global", "x": [3], "y": [5], "F": 9, "G": [2,5,1,3,5], "H": [], "f": 0, "g": [5,5], "h": [] }
hatz_etal_2013.json

Dimension

{ "x": 1, "y": 2, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "global", "x": [0], "y": [0,0], "F": 0, "G": [], "H": [], "f": 0, "g": [0,0], "h": [] }
henderson_quandt_1958.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 2, "H": 0, "f": 1, "g": 1, "h": 0 }

Solution

{ "optimality": "best_known", "x": [93.33333333], "y": [26.66666667], "F": -3266.6666665499997, "G": [93.33333333,106.66666667], "H": [], "f": -711.1111111555551, "g": [26.66666667], "h": [] }
henrion_surowiec_2011.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 0, "H": 0, "f": 1, "g": 0, "h": 0 }

Solution

{ "optimality": "global", "x": [-0.5], "y": [-0.5], "F": -0.25, "G": [], "H": [], "f": -0.125, "g": [], "h": [] }
lampariello_sagratella_2017_ex31.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 1, "H": 0, "f": 1, "g": 1, "h": 0 }

Solution

{ "optimality": "global", "x": [1], "y": [0], "F": 1, "G": [0], "H": [], "f": 0, "g": [0], "h": [] }
lampariello_sagratella_2017_ex32.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 0, "H": 0, "f": 1, "g": 0, "h": 0 }

Solution

{ "optimality": "global", "x": [0.5], "y": [0.5], "F": 0.5, "G": [], "H": [], "f": 0, "g": [], "h": [] }
lampariello_sagratella_2017_ex33.json

Dimension

{ "x": 1, "y": 2, "F": 1, "G": 1, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "global", "x": [0.5], "y": [0.5,0], "F": 0.5, "G": [0], "H": [], "f": 0.5, "g": [0,0.5,0], "h": [] }
lampariello_sagratella_2017_ex35.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 2, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "global", "x": [0.8], "y": [0.4], "F": 0.8, "G": [1.8,0.19999999999999996], "H": [], "f": -0.4, "g": [0,0.4,0.6], "h": [] }
lucchetti_etal_1987.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 2, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "global", "x": [1], "y": [0], "F": 0, "G": [1,0], "H": [], "f": 0, "g": [0,1], "h": [] }
macal_hurter_1997.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 0, "H": 0, "f": 1, "g": 0, "h": 0 }

Solution

{ "optimality": "global", "x": [10.0163], "y": [0.8197], "F": 81.32617377999999, "G": [], "H": [], "f": -0.3321014549999859, "g": [], "h": [] }
morgan_patrone_2006a.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 2, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "global", "x": [0], "y": [1], "F": -1, "G": [0.5,0.5], "H": [], "f": 0, "g": [2,0], "h": [] }
muu_quy_2003_ex1.json

Dimension

{ "x": 1, "y": 2, "F": 1, "G": 2, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "best_known", "x": [0.8438], "y": [0.7657,0], "F": -2.07690507, "G": [0.8438,1.1562000000000001], "H": [], "f": -0.5862964900000003, "g": [1.1562,0.7657,0], "h": [] }
muu_quy_2003_ex2.json

Dimension

{ "x": 2, "y": 3, "F": 1, "G": 3, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "best_known", "x": [0.609,0.391], "y": [0,0,1.828], "F": 0.642584, "G": [0,0.609,0.391], "H": [], "f": 1.670792, "g": [0.001000000000000334,0,0,1.828], "h": [] }
outrata_1990_ex1_a.json

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 0, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "infeasible", "x": [0.97,3.14], "y": [2.6,1.8], "F": -8.91995, "G": [], "H": [], "f": -6.053999999999999, "g": [1.0658,-0.0005999999999999339,2.6,1.8], "h": [] }
outrata_1990_ex1_b.json

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 0, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "best_known", "x": [0.28,0.48], "y": [2.34,1.03], "F": -7.562950000000001, "G": [], "H": [], "f": -0.5799499999999999, "g": [1.74922,0.002990000000000048,2.34,1.03], "h": [] }
outrata_1990_ex1_c.json

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 0, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "infeasible", "x": [20.26,42.81], "y": [3,3], "F": -12, "G": [], "H": [], "f": -112.71000000000001, "g": [-0.0009999999999998899,-0.0009999999999998899,3,3], "h": [] }
outrata_1990_ex1_d.json

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 0, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "best_known", "x": [2,0.06], "y": [2,0], "F": -3.59964, "G": [], "H": [], "f": -2, "g": [2.666,0,2,0], "h": [] }
outrata_1990_ex1_e.json

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 0, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "best_known", "x": [2.42,-3.65], "y": [0,1.58], "F": -3.15391, "G": [], "H": [], "f": -16.2898, "g": [0.41999999999999993,2.52614,0,1.58], "h": [] }
outrata_cervinka_2009.json

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 1, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "global", "x": [0,0], "y": [0,0], "F": 0, "G": [0], "H": [], "f": 0, "g": [0,0,0], "h": [] }
qbp_16_24.json

Dimension

{ "x": 16, "y": 24, "F": 1, "G": 0, "H": 0, "f": 1, "g": 48, "h": 0 }

Solution

{ "optimality": "global", "F": -6.4375, "G": [], "H": [], "f": -1.83125, "h": [] }
qbp_27_27.json

Dimension

{ "x": 27, "y": 27, "F": 1, "G": 0, "H": 0, "f": 1, "g": 81, "h": 0 }

Solution

{ "optimality": "global", "F": -10.585, "G": [], "H": [], "f": -3.5575, "h": [] }
qbp_2_3.json

Dimension

{ "x": 2, "y": 3, "F": 1, "G": 0, "H": 0, "f": 1, "g": 6, "h": 0 }

Solution

{ "optimality": "global", "x": [3.9742278313,3.9782225338], "y": [-0.027203195,0.3097880937,-0.1390405894], "F": -0.7975, "G": [], "H": [], "f": -0.55125, "g": [-4.261924146931051e-11,7.944158664230372e-10,3.0957691965483036e-10,9.474374618179127e-10,-3.0957691965483036e-10,0.8999999990525624], "h": [] }
qbp_32_48.json

Dimension

{ "x": 32, "y": 48, "F": 1, "G": 0, "H": 0, "f": 1, "g": 96, "h": 0 }

Solution

{ "optimality": "global", "F": -12.7625, "G": [], "H": [], "f": -3.46875, "h": [] }
qbp_3_3.json

Dimension

{ "x": 3, "y": 3, "F": 1, "G": 0, "H": 0, "f": 1, "g": 9, "h": 0 }

Solution

{ "optimality": "global", "x": [1,1.45,0.5], "y": [0,0.45,0.5], "F": -1.0475, "G": [], "H": [], "f": -0.67625, "g": [0,0,1,0,0,1.7000000000000002,0,0.8999999999999999,0], "h": [] }
qbp_4_6.json

Dimension

{ "x": 4, "y": 6, "F": 1, "G": 0, "H": 0, "f": 1, "g": 12, "h": 0 }

Solution

{ "optimality": "global", "x": [0.7632918515,0.5902695267,-0.4922192531,0.1200190564], "y": [0.0492924285,0.5446286519,0.5665966409,0.3371019339,0,0.2143487178], "F": -1.41, "G": [], "H": [], "f": -0.595, "h": [] }
qbp_8_12.json

Dimension

{ "x": 8, "y": 12, "F": 1, "G": 0, "H": 0, "f": 1, "g": 24, "h": 0 }

Solution

{ "optimality": "global", "x": [1.8624924073,0.4872349406,0.5665966409,0.7054834322,0.3123541324,0.3676631693,0.6842157921,0.6192019434], "F": -3.235, "G": [], "H": [], "f": -0.5825, "h": [] }
qbp_9_9.json

Dimension

{ "x": 9, "y": 9, "F": 1, "G": 0, "H": 0, "f": 1, "g": 27, "h": 0 }

Solution

{ "optimality": "global", "x": [1.1,1.05,0.5,1,0.5,0.5,1.05,1,1], "y": [0.1,0.05,0.5,0,0.5,0.5,0.05,0,0], "F": -3.735, "G": [], "H": [], "f": -0.5825, "h": [] }
sahin_ciric_1998_ex2.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 2, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "global", "x": [1], "y": [3], "F": 5, "G": [1,7], "H": [], "f": 4, "g": [0,3,7], "h": [] }
shimizu_aiyoshi_1981_ex1.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 3, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "global", "x": [10], "y": [10], "F": 100, "G": [0,10,5], "H": [], "f": 0, "g": [0,10,10], "h": [] }
shimizu_aiyoshi_1981_ex2.json

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 3, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "global", "x": [20,5], "y": [10,5], "F": 225, "G": [0,0,10], "H": [], "f": 100, "g": [10,5,0,5], "h": [] }
shimizu_etal_1997a.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 0, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "global", "x": [5], "y": [2], "F": 25, "G": [], "H": [], "f": -14, "g": [10,0,0], "h": [] }
sinha_malo_deb_2014_tp6.json

Dimension

{ "x": 1, "y": 2, "F": 1, "G": 1, "H": 0, "f": 1, "g": 6, "h": 0 }

Solution

{ "optimality": "unknown", "x": [0], "y": [0,0], "F": 1, "G": [0], "H": [], "f": 17, "g": [12,-4,4,4,0,0], "h": [] }
toll_setting_p1.json

Dimension

{ "x": 3, "y": 8, "F": 1, "G": 3, "H": 0, "f": 1, "g": 18, "h": 0 }

Solution

{ "optimality": "best_known", "x": [7,4,6], "y": [0,0,1,0,0,0,0,0], "F": -7, "G": [7,4,6], "H": [], "f": 12, "h": [] }
toll_setting_p2.json

Dimension

{ "x": 3, "y": 18, "F": 1, "G": 3, "H": 0, "f": 1, "g": 38, "h": 0 }

Solution

{ "optimality": "best_known", "x": [0.5,4,4.5], "F": -4.5, "G": [0.5,4,4.5], "H": [], "f": 32, "h": [] }
toll_setting_p3.json

Dimension

{ "x": 3, "y": 18, "F": 1, "G": 3, "H": 0, "f": 1, "g": 38, "h": 0 }

Solution

{ "optimality": "best_known", "x": [5,3.5,8.5], "F": -3.5, "G": [5,3.5,8.5], "H": [], "f": 32, "h": [] }
toll_setting_p4.json

Dimension

{ "x": 2, "y": 4, "F": 1, "G": 0, "H": 0, "f": 1, "g": 8, "h": 0 }

Solution

{ "optimality": "best_known", "x": [2.5,-1], "y": [0,1,1,0], "F": -4, "G": [], "H": [], "f": 14, "g": [0,0,0,0,0,1,1,0], "h": [] }
toll_setting_p5.json

Dimension

{ "x": 1, "y": 4, "F": 1, "G": 0, "H": 0, "f": 1, "g": 8, "h": 0 }

Solution

{ "optimality": "best_known", "x": [2.5], "y": [0,1,0,1], "F": -2.5, "G": [], "H": [], "f": 14, "g": [0,0,0,0,0,1,0,1], "h": [] }
tuy_etal_2007.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 2, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "infeasible", "x": [4.492188], "y": [1.523438], "F": 22.500616367187995, "G": [4.492188,1.523438], "H": [], "f": -1.523438, "g": [-0.000002000000000279556,0.9843740000000007,5.9374980000000015], "h": [] }
wan_wang_lv_2011.json

Dimension

{ "x": 2, "y": 3, "F": 1, "G": 0, "H": 0, "f": 1, "g": 8, "h": 0 }

Solution

{ "optimality": "global", "x": [0,0.75], "y": [0,0.5,0], "F": 10.625, "G": [], "H": [], "f": -0.5, "g": [0.5,0,0,0,0.75,0,0.5,0], "h": [] }
yezza_1996_ex31.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 2, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "global", "x": [0.25], "y": [0], "F": 1.5, "G": [0.25,0.75], "H": [], "f": -2.5, "g": [0,1], "h": [] }
yezza_1996_ex41.json

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 0, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "unknown", "x": [3], "y": [1], "F": 0.5, "G": [], "H": [], "f": 2.5, "g": [1,2], "h": [] }