Added 18/06/2025
Archetype

linear_bilevel

Datasets

anandalingham_white_1990.json

Description

Anandalingam, G. and White, D.J. (1990) (see page 1172). A solution method for the linear static Stackelberg problem using penalty functions. https://doi.org/10.1109/9.58565

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 1, "H": 0, "f": 1, "g": 6, "h": 0 }

Solution

{ "optimality": "global", "x": [16], "y": [11], "F": -49, "G": [16], "H": [], "f": 17, "g": [28,12,0,0,12,11], "h": [] }
bard_1984a.json

Description

Bard, Jonathan F. (1984) (see page 18). Optimality conditions for the bilevel programming problem. https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800310104

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 1, "H": 0, "f": 1, "g": 5, "h": 0 }

Solution

{ "optimality": "global", "x": [0.8888888888888888], "y": [2.2222222222222223], "F": 3.111111111111111, "G": [0.8888888888888888], "H": [], "f": -6.666666666666667, "g": [0,0,6,7.555555555555555,2.2222222222222223], "h": [] }
bard_1984b.json

Description

Bard, Jonathan F. (1984) (see page 18). Optimality conditions for the bilevel programming problem. https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800310104

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 1, "H": 0, "f": 1, "g": 5, "h": 0 }

Solution

{ "optimality": "best known", "x": [7.2], "y": [1.6], "F": -37.6, "G": [7.2], "H": [], "f": 1.6, "g": [6,2.2,0,0,1.6], "h": [] }
bard_1991_ex2.json

Description

Bard, Jonathan F. (1991) (see page 374). Some properties of the bilevel programming problem. https://doi.org/10.1007/BF00941574

Dimension

{ "x": 1, "y": 2, "F": 1, "G": 1, "H": 0, "f": 1, "g": 5, "h": 0 }

Solution

{ "optimality": "global", "x": [0], "y": [0,1], "F": -1, "G": [0], "H": [], "f": -1, "g": [1,0,0,0,1], "h": [] }
bard_falk_1982_ex2.json

Description

Bard, Jonathan F. and Falk, James E. (1982) (see page 90). An explicit solution to the multi-level programming problem. https://doi.org/10.1016/0305-0548(82)90007-7

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 2, "H": 0, "f": 1, "g": 5, "h": 0 }

Solution

{ "optimality": "global", "x": [2,0], "y": [1.5,0], "F": -3.25, "G": [2,0], "H": [], "f": -4, "g": [0,0,0,1.5,0], "h": [] }
ben_ayed_blair_1990a.json

Description

Ben-Ayed, Omar and Blair, E. (1990) (see page 557). Computational Difficulties of Bilevel Linear Programming. https:/doi.org/10.1287/opre.38.3.556

Dimension

{ "x": 1, "y": 2, "F": 1, "G": 2, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "global", "x": [1], "y": [0,1], "F": -2.5, "G": [1,0], "H": [], "f": -5, "g": [3,0,0,1], "h": [] }
ben_ayed_blair_1990b.json

Description

Ben-Ayed, Omar and Blair, E. (1990) (see page 558). Computational Difficulties of Bilevel Linear Programming. https:/doi.org/10.1287/opre.38.3.556

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 1, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "global", "x": [1], "y": [5], "F": -6, "G": [1], "H": [], "f": 5, "g": [0,0,5,5], "h": [] }
bialas_karwan_1984a.json

Description

Bialas, Wayne F and Karwan, Mark H (1984) (see page 1009). Two-level linear programming. https://www.jstor.org/stable/2631591

Dimension

{ "x": 1, "y": 2, "F": 1, "G": 1, "H": 0, "f": 1, "g": 7, "h": 0 }

Solution

{ "optimality": "global", "x": [1.5], "y": [1,0.5], "F": -2, "G": [1.5], "H": [], "f": -0.5, "g": [0,1,1,0,0,1,0.5], "h": [] }
bialas_karwan_1984b.json

Description

Bialas, Wayne F and Karwan, Mark H (1984) (see page 1016). Two-level linear programming. https://www.jstor.org/stable/2631591

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 1, "H": 0, "f": 1, "g": 6, "h": 0 }

Solution

{ "optimality": "global", "x": [16], "y": [11], "F": -11, "G": [16], "H": [], "f": 11, "g": [28,0,12,12,0,11], "h": [] }
candler_townsley_1982.json

Description

Candler, Wilfred and Townsley, Robert (1982) (see page 91). A linear two-level programming problem. https://doi.org/10.1016/0305-0548(82)90006-5

Dimension

{ "x": 2, "y": 3, "F": 1, "G": 2, "H": 0, "f": 1, "g": 6, "h": 0 }

Solution

{ "optimality": "global", "x": [0,0.9], "y": [0,0.6,0.4], "F": -29.2, "G": [0,0.9], "H": [], "f": 3.2, "g": [0,0,0,0,0.6,0.4], "h": [] }
clark_westerberg_1988.json

Description

Clark, PA and Westerberg, AW (1988) (see page 414). A note on the optimality conditions for the bilevel programming problem. https://doi.org/10.1002/1520-6750(198810)35:5%3C413::AID-NAV3220350505%3E3.0.CO;2-6

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 0, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "global", "x": [19], "y": [14], "F": -37, "G": [], "H": [], "f": 14, "g": [24,0,0], "h": [] }
clark_westerberg_1990b.json

Description

Clark, Peter A and Westerberg, Arthur W (1990) (see page 89). Bilevel programming for steady-state chemical process design-I. Fundamentals and algorithms. https://doi.org/10.1016/0098-1354(90)87007-C

Dimension

{ "x": 1, "y": 2, "F": 1, "G": 2, "H": 0, "f": 1, "g": 5, "h": 0 }

Solution

{ "optimality": "best known", "x": [5], "y": [4,2], "F": -13, "G": [5,3], "H": [], "f": -4, "g": [4,0,14,0,0], "h": [] }
glackin_et_al_2009.json

Description

Glackin, J and Ecker, JG and Kupferschmid, M (2009) (see page 206). Solving bilevel linear programs using multiple objective linear programming. https://doi.org/10.1007/s10957-008-9467-2

Dimension

{ "x": 2, "y": 1, "F": 1, "G": 3, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "global", "x": [1,2], "y": [0], "G": [0,1,2], "H": [], "g": [1,0,0], "h": [] }
haurie_savard_white_1990.json

Description

Haurie, Alain and Savard, G and White, Douglas J (1990) (see page 554). A note on: an efficient point algorithm for a linear two-stage optimization problem. https://doi.org/10.1287/opre.38.3.553

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 0, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "global", "x": [12], "y": [3], "F": 27, "G": [], "H": [], "f": -3, "g": [36,0,0,7], "h": [] }
hu_huang_zhang_2009.json

Description

Hu, Tiesong and Guo, Xuning and Fu, Xiang and Lv, Yibing (2010) (see page 241). A neural network approach for solving linear bilevel programming problem. https://doi.org/10.1016/j.knosys.2010.01.001

Dimension

{ "x": 1, "y": 2, "F": 1, "G": 1, "H": 0, "f": 1, "g": 5, "h": 0 }

Solution

{ "optimality": "global", "x": [1.8888888888888888], "y": [0.8888888888888888,0], "F": -8.444444444444445, "G": [1.8888888888888888], "H": [], "f": -4.555555555555555, "g": [0,0.11111111111111116,0,0.8888888888888888,0], "h": [] }
hypercube_10.json

Dimension

{ "x": 10, "y": 10, "F": 1, "G": 0, "H": 0, "f": 1, "g": 11, "h": 0 }

Solution

{ "optimality": "global", "x": [1,1,1,1,1,1,1,1,1,1], "y": [1,1,1,1,1,1,1,1,1,1], "F": 10, "G": [], "H": [], "f": 10, "h": [] }
hypercube_100.json

Dimension

{ "x": 100, "y": 100, "F": 1, "G": 0, "H": 0, "f": 1, "g": 101, "h": 0 }

Solution

{ "optimality": "global", "F": 100, "G": [], "H": [], "f": 100, "h": [] }
hypercube_3.json

Dimension

{ "x": 3, "y": 3, "F": 1, "G": 0, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "global", "x": [1,1,1], "y": [1,1,1], "F": 3, "G": [], "H": [], "f": 3, "g": [0,0,0,0], "h": [] }
hypercube_50.json

Dimension

{ "x": 50, "y": 50, "F": 1, "G": 0, "H": 0, "f": 1, "g": 51, "h": 0 }

Solution

{ "optimality": "global", "F": 50, "G": [], "H": [], "f": 50, "h": [] }
lan_wen_shih_lee_2007.json

Description

Lan, Kuen-Ming and Wen, Ue-Pyng and Shih, Hsu-Shih and Lee, E Stanley (2007) (see page 882). A hybrid neural network approach to bilevel programming problems. https://doi.org/10.1016/j.aml.2006.07.013

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 1, "H": 0, "f": 1, "g": 7, "h": 0 }

Solution

{ "optimality": "best known", "x": [17.45], "y": [10.908], "F": -85.088, "G": [17.45], "H": [], "f": 50.174, "g": [8.366,0.008000000000002672,0.018000000000000682,32.194,80.25999999999999,53.081999999999994,10.908], "h": [] }
liu_hart_1994.json

Description

Liu, Yi-Hsin and Hart, Stephen M (1994) (see page 166). Characterizing an optimal solution to the linear bilevel programming problem. https://doi.org/10.1016/0377-2217(94)90155-4

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 1, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "global", "x": [4], "y": [4], "F": -16, "G": [4], "H": [], "f": 4, "g": [3,0,0,4], "h": [] }
mersha_dempe_2006_ex1.json

Description

Mersha, Ayalew Getachew and Dempe, Stephan (2006) (see page 250). Linear bilevel programming with upper level constraints depending on the lower level solution. https://doi.org/10.1016/j.amc.2005.11.134

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 1, "H": 0, "f": 1, "g": 5, "h": 0 }

Solution

{ "optimality": "best known", "x": [9], "y": [6], "F": -39, "G": [9], "H": [], "f": 6, "g": [0,12,50,0,6], "h": [] }
mersha_dempe_2006_ex2.json

Description

Mersha, Ayalew Getachew and Dempe, Stephan (2006) (see page 251). Linear bilevel programming with upper level constraints depending on the lower level solution. https://doi.org/10.1016/j.amc.2005.11.134

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 2, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "global", "x": [8], "y": [6], "F": -20, "G": [10,0], "H": [], "f": -6, "g": [15,0], "h": [] }
tuy_et_al_1993.json

Description

Tuy, Hoang and Migdalas, Athanasios and Värbrand, Peter (1993) (see page 17). A global optimization approach for the linear two-level program. https://doi.org/10.1007/BF01100237

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 3, "H": 0, "f": 1, "g": 4, "h": 0 }

Solution

{ "optimality": "global", "x": [2,0], "y": [1.5,0], "F": -3.25, "G": [0,2,0], "H": [], "f": -6, "g": [0,0,1.5,0], "h": [] }
tuy_et_al_1994.json

Description

Tuy, Hoang and Migdalas, Athanasios and Värbrand, Peter (1994) (see page 257). A quasiconcave minimization method for solving linear two-level programs. https://doi.org/10.1007/BF01098360

Dimension

{ "x": 2, "y": 2, "F": 1, "G": 3, "H": 0, "f": 1, "g": 3, "h": 0 }

Solution

{ "optimality": "global", "x": [0,3], "y": [0,0], "F": 6, "G": [1,0,3], "H": [], "f": 0, "g": [0,0,0], "h": [] }
tuy_et_al_2007_ex3.json

Description

Tuy, Hoang and Migdalas, Athanasios and Värbrand, Peter (1993) (see page 551). A global optimization approach for the linear two-level program. https://doi.org/10.1007/BF01100237

Dimension

{ "x": 10, "y": 6, "F": 1, "G": 22, "H": 0, "f": 1, "g": 19, "h": 0 }

Solution

{ "optimality": "infeasible", "x": [0,8.170692,10,0,7.27894,3.042311,0,10,0.001982,9.989153], "y": [3.10128,10,10,10,0,9.846133], "F": -467.461261, "H": [], "f": -11.619362, "h": [] }
visweswaran_et_al_1996.json

Description

Visweswaran, V and Floudas, CA and Ierapetritou, MG and Pistikopoulos, EN (1996) (see page 159). A decomposition-based global optimization approach for solving bilevel linear and quadratic programs. https://doi.org/10.1007/978-1-4613-3437-8_10

Dimension

{ "x": 1, "y": 1, "F": 1, "G": 1, "H": 0, "f": 1, "g": 5, "h": 0 }

Solution

{ "optimality": "best known", "x": [0.8888888888888888], "y": [2.2222222222222223], "F": 3.111111111111, "G": [0.8888888888888888], "H": [], "f": -6.666666666666, "g": [0,0,6,5.555555555555555,2.2222222222222223], "h": [] }
wang_jiao_li_2005.json

Description

Wang, Yuping and Jiao, Yong-Chang and Li, Hong (2005) (see page 228). An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme. https://doi.org/10.1109/TSMCC.2004.841908

Dimension

{ "x": 1, "y": 2, "F": 1, "G": 2, "H": 0, "f": 1, "g": 2, "h": 0 }

Solution

{ "optimality": "best known", "x": [0], "y": [1,0], "F": -1000, "G": [0,1], "H": [], "f": -1, "g": [0,0], "h": [] }
BCPIns_8_7_1.txt_trad.txt_K5.aux

Description

Thürauf, Johannes and Kleinert, Thomas and Ljubić, Ivana and Ralphs, Ted and Schmidt, Martin (2024). BOBILib: Bilevel Optimization (Benchmark) Instance Library. https://optimization-online.org/?p=27063

Dimension

{ "x": 19, "y": 8, "F": 1, "G": 39, "H": 0, "f": 1, "g": 44, "h": 0 }

Solution

{ "optimality": "unknown" }
general20-20-10-20-20-1.aux

Description

Thürauf, Johannes and Kleinert, Thomas and Ljubić, Ivana and Ralphs, Ted and Schmidt, Martin (2024). BOBILib: Bilevel Optimization (Benchmark) Instance Library. https://optimization-online.org/?p=27063

Dimension

{ "x": 40, "y": 40, "F": 1, "G": 100, "H": 0, "f": 1, "g": 110, "h": 0 }

Solution

{ "optimality": "unknown" }