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This program is parametrised by a classification dataset, with d features, split
according to K-fold cross-validation. The superscript k is used to denote fold k&
and bars over the symbols are used to distinguish validation from training.

Training  Validation

Number of examples: n* nk eN
Feature vectors: l’f :Ef € R?
Labels: yr v e {-1,+1}

The Radial Basis Function (RBF) kernel matrix gives a distance between
every two examples j and j in fold k£ defined by

QMY = yFyF exp (—ylaf — 2|?) . (RBF)

The upper-level program is to choose hyperparameters C' and « that min-
imise the average over K folds of validation hinge loss error.
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o solve (Dual-SVM) for k=1,...,K fori=1,...,n"

The lower level problem is the Dual Support Vector Machine which aims to
minimise the hinge loss training error while maximising the width of the margin.
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subject to 0<af<C fori=1,...,n, (Dual-SVM)
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For further details see [1, Section 4].
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