$dempe_dutta_3_4$

This second example from Dempe and Dutta's 2012 paper [1, Example 3.4] shows that in the case of multiple Lagrange multipliers and when the constant rank constraint qualification is not satisfied, the KKT-reformulation will have solutions that do not correspond to bilevel solutions. In particular, this Bilevel program has a unique minimum at (0.5, 0.5). However, its corresponding KKT-reformulation has multiple minima, including one at (0, 1), which is not the solution to the bilevel.

$\underset{x, y^*}{\text{minimise}}$	$(x-1)^2 + (y^*-1)^2$			
subject to	$y^* \in \operatorname*{argmin}_{y} \left\{ \begin{array}{l} -y: \\ \mathrm{s.t.} \end{array} \right.$	$\begin{aligned} x+y &\leq 1\\ -x+y &\leq 1 \end{aligned}$		

			Dimension	Type
Upper-level	х	variables	1	real
	F(x,y)	objective	1	quadratic
	G(x,y)	inequality	0	none
	H(x,y)	equality	0	none
Lower-level	У	variables	1	real
	f(x,y)	objective	1	linear
	g(x,y)	inequality	2	linear
	h(x,y)	equality	0	none

References

[1] Stephan Dempe and Joydeep Dutta. Is bilevel programming a special case of a mathematical program with complementarity constraints? *Mathematical Programming*, 131:37–48, 2012.