$dantzig_3_3$

This transportation problem was first introduced by Dantzig [1, Chapter 3.3, page 35] The cities of Seattle and San Diego have a supply of 350 and 650 units respectively. The cities New York, Chicago and Topeka have a variable demand of x_1 , x_2 and x_3 units respectively. The lower-level variables $y \in \mathbb{R}^6$ represent the transportation between each pair of cities, which each incurs a fixed cost represented in the table below:

	New York	Chicago	Topeka
Seattle	y_1 (\$2.5)	y_2 (\$1.7)	y_3 (\$1.8)
San Diego	$y_4 \ (\$2.5)$	$y_5 \ (\$1.8)$	$y_6 \ (\$1.4)$

The lower-level program aims to find the minimal transportation cost while meeting supply-demand constraints.

$\mathop{\rm minimise}_y$	$2.5y_1 + 1.7y_2$	$+1.8y_3+2.5y_4-$	$+1.8y_5+1.4y_6$
	$\begin{pmatrix} y_1 & +y_2 \end{pmatrix}$	$+y_{3}$	≤ 350
		$y_4 + y_5$	$+y_6 \leq 650$
subject to	$\begin{cases} y_1 \end{cases}$	y_4	$\geq x_1$
	y_2	y_5	$\geq x_2$
	l	y_3	$y_6 \geq x_3$

The upper-level program tries to arrange a demand as close to 400 units as possible for New York, Chicago and Topeka while still maintaining a minimal transportation cost.

$\min_{x_1, x_2, x_3, y}$	$(x_1 - 400)^2$	$x^{2} + (x_{2} - 40)$	$(0)^2 + (x_2 - 400)^2$
subject to	$x_1 \ge 325,$	$x_2 \ge 300,$	$x_3 \ge 275,$
	y solves lower-level		

			Dimension	Type
vel	х	variables	3	real
-le	F(x,y)	objective	1	sum of squares
Upper-level	G(x,y)	inequality	3	bounds
Up	H(x,y)	equality	0	none
vel	У	variables	6	real
-le	f(x,y)	objective	1	linear
Lower-level	g(x,y)	inequality	5	linear
Lo	h(x,y)	equality	0	none

References

George B. Dantzig. Linear Programming and Extensions. Princeton University Press, 1963.