brotcorne2001

Let $G = (\mathcal{N}, \mathcal{A})$ be a transportation network where \mathcal{N} denotes the set of nodes and \mathcal{A} the set of arcs. With each arc a is associated a fixed travel cost c_a and an additional variable toll T_a . Let \mathcal{K} denote the set of commodities. Each node $i \in \mathcal{N}$ has a supply-demand d_i^k for commodity k.

Variable	Description	Туре
T_a	Toll on arc a	Upper-level variable
$\begin{array}{c} T_a \\ y_a^k \\ b_i^k \end{array}$	Flow of commodity k along arc a	Lower-level variable
b_i^k	Supply of/demand for commodity k at node i	Data
c_a	Cost per flow of arc a	Data
T_a^{\max}	The maximum toll on arc a	Data

The leader's objective is to maximize the total revenue, which is the sum of the products between toll T_a and the number of users on arc a. The objective of the lower-level problem is to meet the supply-demand constraint while minimising the total cost of paths selected by the network users. [1]

 $\underset{T,y}{\text{maximise}} \qquad \sum_{a \in \mathcal{A}} T_a \sum_{a \in \mathcal{K}} y_a^k$

subject to

$$\begin{split} T_{a} &\leq T_{a}^{\max} \quad \forall a \in \mathcal{A} \\ y \in & \underset{y}{\operatorname{arg\,min}} \\ & \text{subject to} \quad \sum_{\substack{k \in \mathcal{K} \\ y \in \mathcal{A}}} \sum_{a \in \mathcal{A}} (c_{a} + T_{a}) y_{a}^{k} \\ & \sum_{\substack{k \in \mathcal{K} \\ y \in \mathcal{A}}} \sum_{a \in i^{-}} y_{a}^{k} = b_{i}^{k} \quad \forall k \in \mathcal{K}, \; \forall i \in \mathcal{N}, \\ & \forall k \in \mathcal{K}, \; \forall a \in \mathcal{A}, \end{split}$$

			Dimension	Type
Upper-level	x	variables	7	real
	F(x,y)	objective	1	non-convex
	G(x,y)	inequality	14	bounds
	H(x,y)	equality	0	none
Lower-level	У	variables	7	real
	f(x,y)	objective	1	linear
	g(x,y)	inequality	7	bounds
	h(x,y)	equality	6	linear

References

 Luce Brotcorne, Martine Labbé, Patrice Marcotte, and Gilles Savard. A bilevel model for toll optimization on a multicommodity transportation network. *Transportation Science*, 35(4):345–358, 2001.